

## A REDUCED ORDER MODEL IN OCEAN ENGINEERING DYNAMICS

Module 28

Professor Celso P. Pesce

ceppesce@usp.br

University of São Paulo

with collaboration of Dr. Guilherme R. Franzini, Associate Prof. Dr. Renato M.M. Orsino, Assistant Prof.



# SUMMARY



1. Analytical Model for Mooring forces on the Horizontal Plane

2. Current Induced Motions of a moored mono-column platform



## **MONOCOLUMN PLATFORMS**







MonoBR-GoM with a moon-pool (Nishimoto et al, 2010)

Sevan Marine Co. Up: FPSO Sevan Hummingbird. Bottom: FPSO Sevan Piranema (Gonçalves et al, 2010b)





**MONOBR – TRAJECTORIES AND DYNAMIC RESPONSE** 

MonoBR, Experimental data Gonçalves, R.T., PhD Thesis, 2013; Gonçalves et al 2010, J Offshore Mech and Arctic Engineering



SÃO PAULO SCHOOL OF ADVANCED

20

20

## **REDUCED ORDER MODEL ON THE HORIZONTAL PLANE**





$$\frac{d}{dt} \left( \frac{\partial T}{\partial \dot{\mathbf{q}}} \right) - \frac{\partial T}{\partial \mathbf{q}} = \mathbf{Q}^m + \mathbf{Q}^v \quad \text{Usual Lagrange Equations}$$
$$\mathbf{q} = \begin{bmatrix} x & y & \psi \end{bmatrix}^T \quad \text{Generalized coordinates}$$
$$\mathbf{Q}^m = \begin{bmatrix} Q_j^m \end{bmatrix} \quad \text{Mooring system generalized forces}$$
$$\mathbf{Q}^v = \begin{bmatrix} Q_j^v \end{bmatrix}; \quad \text{Generalized viscous hydrodynamic}$$
$$j = 1, 2, 3$$

 $A \equiv G$ 



## **EQUATIONS OF MOTION**





In the general case, the mass matrix is a full matrix, such that the generalized coordinates couple inertially. In this case, however,

$$\mathbf{M} = \mathbf{M}_{p} + \mathbf{M}_{a} = \begin{bmatrix} M_{p} & 0 & 0 \\ 0 & M_{p} & 0 \\ 0 & 0 & I_{p} \end{bmatrix} + \begin{bmatrix} M_{a} & 0 & 0 \\ 0 & M_{a} & 0 \\ 0 & 0 & I_{a} \end{bmatrix}$$

Assuming the body axisymmetric with respect to a vertical axis, Gz, so that M is invariant w.r.t. the rotation  $\psi$ 

$$M_a = C_a \left( \rho \frac{\pi D^2}{4} H \right) + M_{mp}; \quad I_a = 0$$

Added mass coefficients at very low frequencies





 $M_{mp}$ 







## GENERALIZED NONLINEAR MOORING FORCES ON THE HORIZONTAL PLANE



$$\left| Q_j^m = \sum_{i=1}^N \mathbf{F}_i^T \frac{\partial \mathbf{P}_i}{\partial q_j} = \sum_{i=1}^N f_i\left(r_i\right) \mathbf{e}_i^T \frac{\partial \mathbf{P}_i}{\partial q_j}; \quad j = 1, 2, 3; \quad i = 1, ..., N \right|$$

 $\mathbf{F}_{i} = \mathbf{F}_{i}(r_{i}) = f_{i}(r_{i})\mathbf{e}_{i}; \quad i = 1, ..., N \qquad \text{Horizontal mooring line force function}$ 

$$\mathbf{e}_{i} = \frac{\left(\mathbf{A}_{i} - \mathbf{P}_{i}\right)}{\left|\mathbf{A}_{i} - \mathbf{P}_{i}\right|} = \frac{\left(\mathbf{A}_{i} - \mathbf{P}_{i}\right)}{r_{i}} = \left[\cos\theta_{i} \quad \sin\theta_{i}\right]^{T}; \quad i = 1, .., N \qquad \text{Mooring line unit director vector}$$

 $\mathbf{P}_{i} = \begin{bmatrix} x + R_{i} \cos(\psi + \beta_{i}) & y + R_{i} \sin(\psi + \beta_{i}) \end{bmatrix}^{T}$  Fairlead position, for each mooring line



## **CATENARY MOORING LINES ON A FRICTIONLESS SEABED**



$$\frac{r_{i}(f_{i})}{L_{i}} = 1 - \frac{f_{i}}{\gamma_{i}L_{i}} \left[ \left( \frac{1 + 2f_{i}/\gamma_{i}z_{fi}}{\left(f_{i}/\gamma_{i}z_{fi}\right)^{2}} \right)^{\frac{1}{2}} - \ln \left( 1 + \frac{\gamma_{i}z_{fi}}{f_{i}} + \left( \frac{1 + 2f_{i}/\gamma_{i}z_{fi}}{\left(f_{i}/\gamma_{i}z_{fi}\right)^{2}} \right)^{\frac{1}{2}} \right) \right]$$



- $\gamma_i$  Mooring line linear immersed weight
- $L_i$  Mooring line total length
- $z_{fi}$  Distance from fairlead to sea bottom



## GENERALIZED LINEAR MOORING FORCES: LOCAL STIFFNESS MATRIX

SÃO PAULO SCHOOL OF ADVANCE NONLINEAR DYNAMICS

$$\mathbf{Q}^{m} = \mathbf{Q}^{m}(\mathbf{q};\Pi) \qquad \text{Generalized mooring forces}$$

$$\mathbf{q} = \begin{bmatrix} x & y & \psi \end{bmatrix}^{T} \qquad \text{Generalized coordinates}$$

$$\Pi = \left\{ \begin{pmatrix} \mathbf{A}_{i} & R_{i} & \beta_{i} \end{pmatrix}; i = 1, ..., N \right\} \qquad \text{Geometric parameters}$$

c parameters

### LOCAL STIFFNESS MATRIX









## GENERALIZED LINEAR MOORING FORCES: LOCAL STIFFNESS MATRIX

SÃO PAULO SCHOOL OF ADVANCED SCIENCES ON NONLINEAR DYNAMICS

1 1

$$k_{xx} = \sum_{i=1}^{N} \left( k_i \cos^2\left(\theta_i\right) + \overline{k_i} \sin^2\left(\theta_i\right) \right)$$

$$k_{yy} = \sum_{i=1}^{N} \left( k_i \sin^2\left(\theta_i\right) + \overline{k_i} \cos^2\left(\theta_i\right) \right)$$

$$k_{\psi\psi} = \sum_{i=1}^{N} \left( k_i R_i^2 \sin^2\left(\psi + \beta_i - \theta_i\right) \right) + \sum_{i=1}^{N} \overline{k_i} R_i^2 \left( \cos^2\left(\psi + \beta_i - \theta_i\right) + \frac{r_i}{R_i} \cos\left(\psi + \beta_i - \theta_i\right) \right)$$



# **GENERALIZED LINEAR MOORING FORCES: LOCAL STIFFNESS MATRIX** $k_{xy} = k_{yx} = \sum_{i=1}^{N} (k_i - \overline{k_i}) \operatorname{sen}(\theta_i) \cos(\theta_i)$ $k_{x\psi} = k_{\psi x} = -\sum_{i=1}^{N} (k_i R_i \cos(\theta_i) \operatorname{sen}(\psi + \beta_i - \theta_i)) - \sum_{i=1}^{N} (\overline{k_i} R_i \operatorname{sen}(\theta_i) \cos(\psi$

$$k_{y\psi} = k_{\psi y} = -\sum_{i=1}^{N} \left( k_i R_i \operatorname{sen}\left(\theta_i\right) \operatorname{sen}\left(\psi + \beta_i - \theta_i\right) \right) + \sum_{i=1}^{N} \left( \overline{k_i} R_i \cos\left(\theta_i\right) \cos\left(\psi + \beta_i - \theta_i\right) \right)$$



Module 28 - C.P. Pesce

## **BASICS ON CLASSIC VIV**





Sem separação

Re = 13



Re = 9,6



Re = 26

Meneghini et al, 2010





Re=140





SÃO PAULO SCHOOL OF ADVANCED SCIENCES ON

IAMICS

#### **Vortex shedding:**

- ✓ Flow pasting bluff-bodies
- ✓ Comes from the inherent

instability and interaction ween shear layers

- ✓ Is a self-regulated and stable phenomenon:
   Hopf bifurcation with onset at Re<sup>~</sup>50
- ✓ Important dimensionless param

Re = UD/v Reynolds num $St = f_s D/U Strouhal numbers$ 

- Reynolds number: ratio between inertial a forces
- Strouhal number: depends on the body shape and regulates the shedding frequency





See Aranha, JBSMSE, 2004 for a formal mathematical treatment from first principles.

Vorticity contours









Generation and vortex shedding at Re=500. Half-cycle. Blackburn & Henderson, 1999



#### **Vortex Induced Vibrations:**

- ✓ Nonlinear fluid-structure interaction resonant phenomenon
- ✓ Self-regulated
- ✓ Important dimensionless parameters:

| $U^* = V_r = U/f_n D$                 | Reduced velocity                |
|---------------------------------------|---------------------------------|
| $f_s^* = f_s / f_n = StU^*$           | Shedding frequency              |
| $f^* = f / f_n$                       | Response frequency              |
| $m^* = m/m_d$                         | Mass ratio (specific density)   |
| $C_a = m_a / m_d$                     | Added mass coefficient          |
| $\zeta = c/2m\omega_n = c/4\pi m f_n$ | <sup>1</sup> Structural damping |



Figura 35: Variação do campo de pressão na parede para aproximadamente um terço do ciclo de emissão de vórtices. Adaptado de Blevins (1990) e Meneghini (1993).

















#### Wake-oscillator model for 1DOF VIV considering Added Mass as function of reduced velocity and a stall term Fujarra, 2002 (PhD thesis) and Fujarra & Pesce (ASME-FSI, 2002)





Figure 11. Non-dimensional amplitude prediction for Experiment (I) (Flexible Cantilever). Analytical Model modified by introducing added mass variability with reduced velocity, extracted from Experiment (II) (Elastically Mounted Rigid Cantilever, Figure 4). Lift-coefficient variability  $C_L = C_L(V_r)$ , adjusted according to Figure 10, after Willden and Grahan (2001).



## **2DOF VIV**





Eight-shaped trajectories: dual resonance



## CURRENT INDUCED MOTIONS ON LOW ASPECT RATIO CYLINDERS



Gonçalves et al., Ocean Engineering 2018









Added Mass in VIV Gonçalves, R.T., PhD Thesis, 2013



## FLOW AROUND A LOW-ASPECT RATIO CYLINDER (L/D=0.5)



FAPESP

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO





## **CURRENT INDUCED FORCES**

$$F_{Vx} = \frac{1}{2}\rho DLC_x V^2; F_{Vy} = \frac{1}{2}\rho DLC_y V^2$$

$$C_x = (C_D U_x - C_L U_y) \frac{U}{V^2}; C_y = (C_D U_y + C_L U_x) \frac{U}{V^2}$$

$$U_x = V - \dot{x}; U_y = -\dot{y}; U = \sqrt{U_x^2 + U_y^2}$$

$$F_{Vx} = F_D \cos\beta - F_L \sin\beta; F_{Vy} = F_D \sin\beta + F_L \cos\beta$$

$$\cos\beta = U_x / U; \sin\beta = U_y / U$$

$$F_{Vx} = \frac{1}{2}\rho DH (C_D U_x - C_L U_y) U; F_{Vy} = \frac{1}{2}\rho DH (C_D U_y + C_L U_x) U$$

$$Q^y = \frac{1}{2}\rho DH U [(C_D U_x - C_L U_y) (C_D U_x - C_L U_y) 0]^T$$



N 1N



governing two new generalized coordinates, related to the *wake dynamics*:

$$\mathbf{W} = \begin{bmatrix} w_x & w_y \end{bmatrix}^T$$

## $(\varepsilon_x, \varepsilon_y)$ and $(A_x, A_y)$ Empirical parameters to be adjusted



Module 28 - C.P. Pesce

## PHENOMENOLOGICAL MODEL AND HYDRODYNAMIC FORCES





(Rosetti et al, 2009)



## **THE 5-DOF REDUCED ORDER MODEL**



$$\tilde{\mathbf{M}}\ddot{\tilde{\mathbf{q}}} = \tilde{\mathbf{Q}}_c + \tilde{\mathbf{Q}}_{nc} \qquad \qquad \tilde{\mathbf{M}} \in \mathfrak{R}^{5x5}; \, \tilde{\mathbf{q}} \in \mathfrak{R}^5$$







#### Plataformas de Petróleo e Gás

#### Monocoluna - Moonpool

MonoBR



# Completação Seca Mass of water Dia Mass of water Density

#### Table 1 – MonoBr-GoM main particulars and general parameters.

| Draught, H (m)                           | 39.50    |
|------------------------------------------|----------|
| Diameter, $D$ (m)                        | 100.0    |
| Mass, $M$ (t)                            | 262000.0 |
| Added mass coefficient, $C_a$            | 1.0      |
| Mass of water in moon-pool, $M_{mp}$ (t) | 67447.0  |
| Density of water, $\rho(t/m^3)$          | 1.025    |

#### Table 3 – Wake-oscillators parameters; Rosetti et al (2009), Gonçalves et al (2010).

| $[A_x; A_y]$                      | [12; 6]                  |
|-----------------------------------|--------------------------|
| $[\varepsilon_x;\varepsilon_y]$   | [0.30; 0.15]             |
| $[C_{D0}; C_{L0}; C_{D0}^{f}; K]$ | [0.70; 0.30; 0.10; 0.05] |
| Strouhal number, St               | 0.078                    |





### ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO







Local mooring stiffness matrix as function of platform offset (% depth) at yaw angle  $\Psi = 0^{\circ}$ 





#### Perfectly symmetric mooring arrangement





Natural periods as function of platform offset (% depth) at yaw angle  $\Psi = 0^{\circ}$ 





#### Small changes in symmetric mooring arrangement



Natural periods as function of platform offset (% depth) at yaw angle  $\Psi = 0^{\circ}$ 



Perfectly symmetric mooring arrangement







Small changes in symmetric mooring arrangement



(-100,-100)

Oscillation modes for five offsets (m).



179.76 9

(100, -100)

SÃO PAULO SCHOOL OF ADVANCED SCIENCES ON







Local mooring stiffness matrix as function of platform offset (% depth) at yaw angle  $\Psi = 5^{\circ}$ 





#### Small changes in symmetric mooring arrangement





Natural periods as function of platform offset (% depth) at yaw angle  $\Psi = 0^{\circ}$ 



オリシュイシ

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO



Figure 6 – Center of mass trajectories on the horizontal plane. Current direction: (i) from left to right,  $\alpha$  = 0 and (ii) from right to left,  $\alpha$  =  $\pi$ . The terms 'linear' and 'nonlinear' in the legend refer only to the mooring system.









Figure 7 – Normalized amplitudes and oscillation frequencies, as a function of the reduced velocity. (a): linear mooring model,  $\alpha = 0$ ,  $\pi$ ; (b): nonlinear mooring model,  $\alpha = 0$ ; (c): nonlinear mooring model,  $\alpha = \pi$ .

 $St = 0.078 \implies$  resonance peak expected at  $V_r = 1/St \cong 12.8$ 





Figure 8. Surge, sway and yaw motions. V=0.56 m/s;  $V_r=4.4$ .

(a): linear mooring model,  $\alpha = 0$ ,  $\pi$ , (b): nonlinear mooring model,  $\alpha = 0$ ; (c): nonlinear mooring model,  $\alpha = \pi$ .





Figure 8. Surge, sway and yaw motions. V=1.28 m/s;  $V_r=10.0$ .

(a): linear mooring model,  $\alpha = 0$ ,  $\pi$ ; (b): nonlinear mooring model,  $\alpha = 0$ ; (c): nonlinear mooring model,  $\alpha = \pi$ .





Figure 8. Surge, sway and yaw motions. V=2.0 m/s;  $V_r=15.7$ .

(a): linear mooring model,  $\alpha = 0$ ,  $\pi$ ; (b): nonlinear mooring model,  $\alpha = 0$ ; (c): nonlinear mooring model,  $\alpha = \pi$ .





## **MONOBR – TRAJECTORIES AND DYNAMIC RESPONSE**





SÃO PAULO SCHOOL OF ADVANCED SCIENCES ON NONLINEAR DYNAMICS

MonoBR, Experimental data, *linear mooring lines* Gonçalves, R.T., PhD Thesis, 2013 Gonçalves et al 2010, J Offshore Mech and Arctic Engineering



# ACKNOWLEDGMENTS



- > Dr. Guilherme R. Franzini, Associate Professor
- **Dr. Renato M.M. Orsino, Assistant Professor**
- Giovanni A. Amaral, PhD student
- Wagner A. Defensor Filho, PhD student
- **Rafael Salles, PhD student**
- Letícia S. Madi, MSc student
- Renato Finoteli, MSc student
- **NDF** team, particularly:
  - **Dr. Gustavo R.S. Assi, Assistant Professor**
  - Professor Julio R. Meneghini
- **\*** TPN team, particularly:
  - **Dr. Pedro C. de Mello, TPN Research Lab**
  - Professor Eduardo A. Tannuri
  - Professor Kazuo Nishimoto



- **•** Dept of Mechanical Engineering, particularly:
  - > Dr. Décio C. Donha, Associate Professor and Chair
  - **Everton L. de Oliveira, PhD student**
- **\*** Dept of Ocean Engineering, particularly:
  - **Dr. Bernardo L. R. Andrade, Chair**
  - > Dr. Alexandre N. Simos, Associate Professor
- Ocean Space Utilization Lab, University of Tokyo, particularly:
  - > Dr. Rodolfo T. Gonçalves, Assistant Professor





# SUPPORTING AGENCIES





FINANCIADORA DE ESTUDOS E PROJETOS MINISTÉRIO DA CIÊNCIA E TECNOLOGIA



# SÃO PAULO SCHOOL OF ADVANCED SCIENCES ON NONLINEAR DYNAMICS





## UNIVERSIDADE DE SÃO PAULO